ELIMU NI HAKI YAKO...Na Dr.doppler, ALGEBRA Form two By Juma a. mkiwa

Dr.Doppler akiwa mahabala @2017

              
02. ALGEBRA
Form two
By Juma a. mkiwa
dr.doppler

0756547078 


  


 Content;
1.      Binary operation
2.      Brackets in computation
3.      Quadratic computation
4.      Quadratic expressions
5.      Factorization.  


1.0 BINARY OPERATIONS                             
     This is the operation in which the two numbers are combined according to the instruction. A binary      operation is often denoted by *; but other instruction may be explained in words or by symbols e.g. x, *, , ~,  etc.     Bi means two
 Example 1. Evaluate (i) 5 x 123
Solution:
5 x 123 = 5(100 + 20 + 3)
= 500 + 100 + 15   = 615
 5 x 123 = 615
(ii) (8 x 89) – (8 x 79)
= 8(89 – 79) = 8(10)   = 80
Example 1.   A binary operation * is defined over   R the set of all real numbers, that a*b = a+4b. Find the value of 2*3
Solution:
From a*b = a+4b,
Just take as a =2, b = 3
Hence 2*3 = 2 + 4(3) = 2+ 12
                                       = 14
 2*3 = 14
Example 3. If a * b = 4a – 2b,   Find 3 * 4
Solution:
From; a * b = 4a – 2b
Then; 3 * 4 = 4(3) – 2(4) = 12 – 8
       3 * 4 = 4
Example 3. If p * q = 5q – p                    Find 6 * (3 * 2)                                          Solution:                                                      consider 3 * 2
From p * q = 5q – p
Then;   3 * 2 = 5q – p = 10 – 3=7
Also, 6 * 7 = 5q – p
6 * 7 = 5(7) – 6 = 35 - 6 = 29
         6 *(3 * 2) = 29 
Example 4.The operation x*y is defined as x2+y. find the value of 3*6 if x = 3 and y = 6. (ANS =15)
Example 5.The operation x*y is defined as 2x + y2. Find the value of the following.
i.                    3*2
ii.                  (1*3)*2
iii.                (2*1)*(2*3)
(ANS i.10, ii.26, iii.179)

2.0 BRACKETS IN   COMPUTATION   
 In expression where there are a mixture of operations, the order of performing the operation is BODMAS
B = BRACKET,                                                                                       
 O = OPEN                                                         
  D = DIVISION                                                     
 M = MULTIPLICATION                                      
 A = ADDITION                                       
 S = SUBTRACTION
Example
Simplify the following expression
(i) 10x – 4(2y + 3y)
Solution
10x – 4(2y + 3y)
= 10x – 4(5y)
= 10x – 20y
ALGEBRAIC EQUATIONS
When two algebraic expression are connected by “=” sign, the statement formed is called an algebraic equation e.g.
i.                    2x + y = 7
ii.                  4x = 3y +2
iii.                5x = 8
IDENTITY                                                     
 is the equation which are true for all values of the unknown variable (s).
Example
Determine which of the following identity are.
i.                    3y + 1 = 2(y + 1)
ii.                  2(p – 1) + 3 = 2p + 1
iii.                2x + 2y = 2(x + y)
iv.                2x + 1 = (4x + 6) - 2x – 5
Solution:
i.                    3y + 1 = 2(y + 1)
Test for y = 3
3(3) + 1 = 3(2 + 1)
9 + 1 = 3(3)
10 = 9
Now, LHS ≠ RHS (The equation is not an identity)
 
ii.   2(p – 1) + 3 = 2p + 1
Test for p = 4
2(4 – 1) + 3 = 2(4) + 1
2(3) + 3 = 8 + 1
6 + 3 = 9
9 = 9
Now, LHS  RHS (The equation is an identity)

EXERCISE
1. If a * b = 3a3 + 2b
Find (2* 3) * (3 * 2)
Solution:
a* b = 3a3 + 2b
(2 * 3) = 3(2)3 + 2 x 3= 3(8) + 6
= 24 + 6 = 30
Then
(3 * 2) = 3(3)3 + 2(2)
a * b = 30 * 85
30 * 85 = 3(30)3 + 2(85)
= 3(27000) + 170= 81000 + 170
(2 * 3) * (3 * 2) = 81170

2. If x * y = 3x + 6y, find 2*(3 * 4)

Solution:
Consider (3 * 4)
From x * y = 3x + 6y
3 * 4 = 3(3) + 6(4) = 9 + 24=   33
Then 2 * 33 = 3x + 6y
2 *33 = 3(2) + 6(33)
= 6 + 198 = 204
 2 * (3 * 4) = 204

3. If m*n = 4m2 – n
Find y if 3 * y = 34
Solution:
= m * n = 4m2 – n
= 3 * y = 34
= 3 * y = 4(3)2 – y = 34
= 4(32) – y = 34
= 4(9) – y = 34
36 – y = 34
   y = 2

4. Determine if the following is identities
2y + 1 = 2(y + 1)
Solution:
2y + 1 = 2(y + 1)
Test for y = 7
2(7) + 1 = 2(7 + 1)
14 + 1 = 2(8)
15 = 16
Now, LHS  RHS (The equation is not an identity).

3.0 QUADRATIC EXPLESSION
 
Is an expression of the form of    ax+ bx + c.
-       Is an expression whose highest power is 2.
-          General form of quadratic expression is ax2 + bx + c where a, b, and c are real numbers and a ≠ 0.
Note (i) a≠ o, bx – middle term
y = mx + c– linear equation
y = ax2 + bx + c– quadratic equation
 Example
(i)                 2x2 + 3x + 6
(a =2, b =3, c =6)
ii) 3x2 – x (a =3, b = -1, c = 0)
iii) 1/2x2 – 1/4x +5
 (a = ½, b = -1/4, c = 5)
iv) –x2 – x – 1 
 (a = -1, b = -1, c = -1)
v) x2 – 4   (a = 1, b = 0, c = -4)
vi) x   (a = 1, b = 0, c = 0)

Example
If a rectangle has length 2x + x and width x – 5 find its area
Solution:
From,­  
                                             A = L X W
where  A is area, l is length and w is width

= (2x + 3) (x-5)
Alternative way:
= 2x(x–5) +3(x-5) 
(2x + 3) X (x-5)
                                    = 2x2 – 10x + 3x – 15                                      
  = 2x2 – 7x –  2x2 - 7x-15  Unit area   

           
EXPANSION
Example 1. Expand
i) (x + 2) (x + 1)
Solution:
(x + 2) (x + 1)  
Alternative way:
= (x+2) (x+1)
=x(x + 1) + 2(x + 1)
         = x2 + x + 2x +2
            = x2 +x+2x+2
   = x2 + 3x +2  
 
ii) (x – 3) (x + 4)
 Alternative way:
(x-3) (x+4)
=x (x + 4) – 3(x + 4)  
=x2 + 4x – 3x – 12
   = x2 + x –12
iii) (3x + 5) (x – 4)  
 Alternative way:
=3x(x -4) + 5 (x – 4)
=(3x+5) (x-4)
= 3x2 – 12x + 5x – 20
=3x2-12x+5x-20
= 3x2 – 7 – 20
=3x2-7x-20

iv) (2x + 5) (2x – 5)
Alternative way:
2x (2x – 5) + 5(2x – 5)
=(2x+5) (2x-5)
=4x2 – 10x + 10x – 25
=4x2-10x+10x-25
= 4x2-25
EXERCISE
I. Expand the following
(x+3) (x+3)
Alternative way:
(x+3) (x+3)
=x(x + 3) + 3x + 9
= x2 + 3x + 3x + 9
=x2+3x +3x+9
=x2+6x+9
Therefore   x2+6x+9

iii) (2x – 1) (2x – 1)
Solution:
2x(2x – 1) – 1 (2x – 1)
 =(2x-1) (  2x-1)
= 4x2 – 2x – 2x + 1
= 4x2 - 4x +1
iii) (3x – 2) (x +2)
Solution:
3x(x + 2) – 2(x + 2)
Alternative way:
= 3x2 + 6x – 2x – 4
= (3x-2) (x+2)
= 3x2 + 4x – 4
=3x2+6x-2x-4
 = 3x2+4x-4

2) Expand the following
i) (a + b) (a + b)
Solution:
a(a + b) + b(a + b)
= (a + b) (a + b)
= a2 + ab + ba + b2
 = a2 + 2ab + b2
ii) (a + b) (a –b)
Solution:
a(a + b) - b(a + b)
= (a+b) (a-b)
= a2 - ab + ab -b2
 = a2 - b2
iii) (p + q) (p – q)
Solution:
p(p - q) + q(p – q)
 Alternative way:
= p2 – p q + q p – q2
= (p+ q)(p-q) = p2 – q2
= p2-pq+pq- q2
= p2 – q2  
iv) (m – n) (m + n)
Solution:
m(m + n) – n(m + n) Alternative way:
= m2 +mn – nm + n2    
= (m-n) (m +n)
= m2 – n2 = m2 + mn -nm - n2
                                                          
   =   m2 – n2
v) (x – y) (x – y)
Solution:
x(x – y) – y(x – y)
= (x-y)     (x-y)
= x2 – xy – yx + y2
= x2 – 2xy + y2
4.0 FACTORIZATION
-          Is the process of writing an expression as a product of its factors
(i) BY SPLITTING THE MIDDLE TERM
- In quadratic form
ax2 + bx + c
Sum = b
Product =ac

Example     i) x2 + 6x + 8
Solution:
Find the number such that
i) Sum = 6; coefficient of x
ii) Product = 1 x 8; Product of coefficient of x2 and constant term
= 8 = 1 x 8
= 2 x 4
Now
x2 + 2x + 4x + 8
(x2 + 2x) + (4x + 8)
x (x + 2) + 4(x + 2)
= (x + 4) + (x + 2)

ii) 2x2 + 7x + 6
Solution:
Sum  = 7
Product, = 2 x 6 = 12
-          12 = 1 x 12
= 2 x 6
= 3 x 4
Now,
2x2 + 3x + 4x + 6
(2x2 + 3x) + (4x + 6)
= x (2x + 3) + 2(2x + 3)
= (x + 2) (2x + 3x)

iii) 3x2 – 10x + 3
Solution:
Sum = -10
Product = 3 x 3 = 9
9 = 1 x 9
= 3 x 3
Now,
3x2 – x - 9x + 3
(3x2 – x) - (9x + 3)
x(3x – 1) - 3(3x + 1)
(x - 3) (3x - 1)

iv) x2 + 3x – 10
Solution:
Sum = 3
Product = 1 x -10 = -10
= -2 x 5
Now,
X2 – 2x + 5x – 10
(x2 – 2x) + (5x – 10)
x (x – 2) + 5(x – 2)
= (x + 5) (x – 2)

EXERCISE
i) Factorize the following
4x2 + 20x + 25
Solution:
Sum = 20
Product = 4 x 25 = 100
100 = 1 x 100
= 2 x 50
= 4 x 25
= 5 x 20
= 10 x 10
= 4x2 + 10x + 10x + 25
(4x2 + 10x) + (10x + 25)
2x(2x + 5) + 5 (2x + 5)
= (2x + 5) (2x + 5)

ii) 2x2 + 5x – 3
Solution:
Sum = 5
Product =  -6
number = (- 1,6)
= 2x2 – x + 6x – 3
= 2x2 + 5x – 3
(2x2 – x) + (6x – 3)
x (2x – 1) + 3(2x – 1)
= (x + 3) (2x – 1)

iii) x2 – 11x + 24
Solution:
Sum = -11
Product = 1 x 24 = 24
24 = 1 x 24
= 1 x 24
= 2 x 12
= 3 x 8 = -3 x -8
= 4 x 6
x2 – 3x – 8x + 24
(x2 – 3x) – (8x – 24)
x(x – 3) – 8(x – 3)
= (x – 8) (x – 3)

iv) x2 – 3x – 28
Solution:
Sum = -3
Product = 1 x -28 = -28
28 = 1 x 28
= 2 x 14
= 4 x  7
= x2 + 4x - 7x - 28
(x2 + 4x) - (7 + 28)
x(x +4) - 7(x +4)
(x - 7) (x + 4)

BY INSPECTION
Example
Factorize
i) x2 + 7x + 10
Solution:
(x + 2) (x + 5)

ii) x2 + 3x – 40
Solution:
(x – 5) (x + 8)

iii) x2 + 6x + 7
Solution:
Has no factor.



DIFFERENT OF TWO SQUARE
Consider a square with length ‘’a’’ unit
1st case,
At = (a x a) – (b x b)
= a2 – b2
2nd case
A1 = a (a – b) …….(i)
A2 = b (a – b)…….(ii)
Now, 1st case = 2nd case
AT = A1 + A2
a2 – b2 = a (a – b) + b(a – b)
= (a + b) (a – b)
Generally  
  a2 – b2 = (a + b) (a – b)
Example 1
Factorize i) x2 – 9
ii) 4x2 – 25
iii) 2x2 – 3
Solution:
i) x2 – 9 = x2 – 32
= (x + 3) (x – 3)
ii) 4x2 – 25 = 22x2 – 52
= (2x)2 - 52
iii)2x2 – 3 =( )2 x2 – (  )2
= (  x)2 - ( )2
=(  x + ) (  x - )


EXERCISE
I. Factorize by inspection
i) x2 + 11x – 26
Solution:
(x + 13) (x -2)
ii) x2 – 3x – 28
Solution:
(x - 7) (x + 4)

2. Factorization by difference of two square
i) x2 – 1
Solution:
X2 – 1 =  (  )2 - ( )2
= (x)2 –  1
= (x + 1) (x – 1)
ii) 64 – x2
Solution:
64 – x2 = 82 – x2
= (8 + x) (8 – x)
iii) (x + 1)2 – 169
solution:
(x + 1)2 – 169
(x + 1)2 – 132
= (x + 1 – 13) (x + 1 + 13)
= (x – 12) (x + 14)
iv) 3x2 – 5
Solution:
3x2 – 5 = (  x)2 - ( )2
= (  x - ) (  x + )


APPLICATION OF DIFFERENCES OF TWO SQUARE
Example 1
Find the value of i) 7552 - 2452
ii) 50012 - 49992
Solution:
i) 7552 – 7452
From a2 – b2 = (a + b) (a – b)
7552 - 2452 = (755 – 245)(755 + 245)
= (510) (1000)
= 510, 000

ii) 50012 – 49992
50012 – 49992 = (5001 – 4999) (5001 + 4999)
     50012 – 49992 = (5001 + 4999)
= (2) (10000)
= 20,000
PERFECT SQUARE
Note
(a + b)2 = (a + b) (a + b)
(a - b)2 = (a – b) (a – b)

Example
Factorize i) x2 + 6x + 9
Sum = 6
Product = 9 x 1 = 9
= 9 = 1 x9
= 3 x 3
x2 + 3x + 3x + 9
(x2 + 3x) + (3x + 9)
= x (x + 3)+3 (x + 3)
= (x + 3)2
ii) 2x2 + 8x + 8
Sum = 8
Product = 2 x 8 = 16
16 = 1 x 16
= 2 x 8
= 4 x4
2x2 + 4x + 4x + 8
(2x2 + 4x)+ (4x + 8)
2x(x + 2) +4(x + 2)
(x +2) (2x + 4)
For a perfect square
ax2 + bx + c
Then 4ac = b2
Example 1
If ax2 + 8x + 4 is a perfect square find the value of a
Solution:
ax2 + 8x + 4
a = a, b = 8, c = 4
From,
4ac = b2
4(a) (4) = 82
16a/16 = 64/16
a = 4
Example2
If 2x2 + kx + 18 is a perfect square find k.
Solution:
2x2 + kx + 18
a = 2, b = kx, c = 18
From   4ac = b2
4(2) (18) = k2
 =
K =
K = 12
-        
  Other example
Factorize i) 2x2 – 12x
Solution:
 2x(x – 6)
ii) x2 + 10x
Solution:
= x(x + 10)

THE END OF ALGEBRA FOR FORM TWO
By juma a.mkiwa
Physics teacher at DR.DOPPLER sec. school @2017


 

Maoni

Ulizikosa hizi ....

On-Line Learning with Mr.Juma A. Mkiwa in BIOLOGY